Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
ssrn; 2022.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4274577

Subject(s)
COVID-19
2.
Forests ; 13(2):264, 2022.
Article in English | ProQuest Central | ID: covidwho-1715216

ABSTRACT

In the context of rapid urbanization, urban foresters are actively seeking management monitoring programs that address the challenges of urban biodiversity loss. Passive acoustic monitoring (PAM) has attracted attention because it allows for the collection of data passively, objectively, and continuously across large areas and for extended periods. However, it continues to be a difficult subject due to the massive amount of information that audio recordings contain. Most existing automated analysis methods have limitations in their application in urban areas, with unclear ecological relevance and efficacy. To better support urban forest biodiversity monitoring, we present a novel methodology for automatically extracting bird vocalizations from spectrograms of field audio recordings, integrating object-based classification. We applied this approach to acoustic data from an urban forest in Beijing and achieved an accuracy of 93.55% (±4.78%) in vocalization recognition while requiring less than ⅛ of the time needed for traditional inspection. The difference in efficiency would become more significant as the data size increases because object-based classification allows for batch processing of spectrograms. Using the extracted vocalizations, a series of acoustic and morphological features of bird-vocalization syllables (syllable feature metrics, SFMs) could be calculated to better quantify acoustic events and describe the soundscape. A significant correlation between the SFMs and biodiversity indices was found, with 57% of the variance in species richness, 41% in Shannon’s diversity index and 38% in Simpson’s diversity index being explained by SFMs. Therefore, our proposed method provides an effective complementary tool to existing automated methods for long-term urban forest biodiversity monitoring and conservation.

3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2111.01817v2

ABSTRACT

COVID-19 has challenged health systems to learn how to learn. This paper describes the context, methods and challenges for learning to improve COVID-19 care at one academic health center. Challenges to learning include: (1) choosing a right clinical target; (2) designing methods for accurate predictions by borrowing strength from prior patients' experiences; (3) communicating the methodology to clinicians so they understand and trust it; (4) communicating the predictions to the patient at the moment of clinical decision; and (5) continuously evaluating and revising the methods so they adapt to changing patients and clinical demands. To illustrate these challenges, this paper contrasts two statistical modeling approaches - prospective longitudinal models in common use and retrospective analogues complementary in the COVID-19 context - for predicting future biomarker trajectories and major clinical events. The methods are applied to and validated on a cohort of 1,678 patients who were hospitalized with COVID-19 during the early months of the pandemic. We emphasize graphical tools to promote physician learning and inform clinical decision making.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339952

ABSTRACT

Normal tissue physiology and repair depends on communication with the immune system. Understanding this communication at the molecular level in intact tissue requires new methods. The consequences of SARS-CoV-2 infection, which can result in acute respiratory distress, thrombosis and death, has been studied primarily in accessible liquid specimens such as blood, sputum and bronchoalveolar lavage, all of which are peripheral to the primary site of infection in the lung. Here, we describe the combined use of multiplexed deep proteomics with multiplexed imaging to profile infection and its sequelae directly in fixed lung tissue specimens obtained from necropsy of infected animals and autopsy of human decedents. We characterize multiple steps in disease response from cytokine accumulation and protein phosphorylation to activation of receptors, changes in signaling pathways, and crosslinking of fibrin to form clots. Our data reveal significant differences between naturally resolving SARS-CoV-2 infection in rhesus macaques and lethal COVID-19 in humans. The approach we describe is broadly applicable to other tissues and diseases.


Subject(s)
COVID-19 , Thrombosis , Death , Infections
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339465

ABSTRACT

Antigenic imprinting, which describes the bias of antibody response due to previous immune history, can influence vaccine effectiveness and has been reported in different viruses. Give that COVID-19 vaccine development is currently a major focus of the world, there is a lack of understanding of how background immunity influence antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting in Sarbecovirus, which is the subgenus that SARS-CoV-2 belongs to. Specifically, we sequentially immunized mice with two antigenically distinct Sarbecovirus strains, namely SARS-CoV and SARS-CoV-2. We found that the neutralizing antibodies triggered by the sequentially immunization are dominantly against the one that is used for priming. Given that the impact of the background immunity on COVID-19 is still unclear, our results will provide important insights into the pathogenesis of this disease as well as COVID-19 vaccination strategy.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211664

ABSTRACT

SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339986

ABSTRACT

We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. The commonality is in the phylogenetic retrodiction based on the genomic reads in both scenarios. While there is evidence of heteroplasmy, i.e., multiple lineages of SARS-CoV-2 in the same COVID-19 patient; to date, there is no evidence of sublineages recombining within the same patient. The heterogeneity in a patient's tumor is analogous to intra-patient heteroplasmy and the absence of recombination in the cells of tumor is a widely accepted assumption. Just as the different frequencies of the genomic variants in a tumor presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that so do the different variant frequencies in the viral reads, offering the means to infer the multiple co-infecting sublineages. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios. To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries. We uncovered new potential parallel mutation in the evolution of the SARS-CoV-2 virus. In the context of cancer, we uncovered new clones harboring resistant mutations to therapy from clinically plausible phylogenetic tree in a patient.


Subject(s)
COVID-19 , Neoplasms
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.325050

ABSTRACT

SARS-CoV-2, a positive single-stranded RNA virus, caused the COVID-19 pandemic. Although its sense-mRNA architecture was reported, its anti-sense strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand. During negative strand synthesis, apart from canonical sub-genomic ORFs, numerous non-canonical fusion transcripts are formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor Remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the anti-viral drug design.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.339838

ABSTRACT

The Spike protein of SARS-CoV-2, its receptor binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.340794

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a severe threat to humanity. Rapid and comprehensive analysis of both pathogen and host sequencing data is critical to track infection and inform therapies. In this study, we performed unbiased metatranscriptomic analysis of clinical samples from COVID-19 patients using a newly-developed RNA-seq library construction method (TRACE-seq), which utilizes tagmentation activity of Tn5 on RNA/DNA hybrids. This approach avoids the laborious and time-consuming steps in traditional RNA-seq procedure, and hence is fast, sensitive and convenient. We demonstrated that TRACE-seq allowed integrated characterization of full genome information of SARS-CoV-2, putative pathogens causing coinfection, antibiotic resistance and host response from single throat swabs. We believe that the integrated information will deepen our understanding of pathogenesis and improve diagnostic accuracy for infectious diseases.


Subject(s)
Coronavirus Infections , COVID-19 , Communicable Diseases
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.340604

ABSTRACT

Cell entry of the pandemic virus SARS-CoV-2 is mediated by its spike protein S. As main antigenic determinant, S protein is in focus of antibody-based prophylactic and therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here we present quantitative assay systems covering not only particle-cell and cell-cell fusion, but also demonstrating fusion-from-without (FFWO), the formation of syncytia induced by S-containing viral particles in absence of newly synthesized S protein. Based on complementation of split {beta}-galactosidase and virus-like-particles (VLPs) displaying S protein, this assay can be performed at BSL-1. All three assays provided readouts with a high dynamic range and signal-to-noise ratios covering several orders of magnitude. The data obtained confirm the enhancing effect of trypsin and overexpression of angiotensin-converting enzyme 2 (ACE2) on membrane fusion. Neutralizing antibodies as well as sera from convalescent patients inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring much lower levels of S protein, which were below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as a pathological consequence in tissues of Covid-19 patients can proceed at low levels of S protein and may not be effectively prevented by antibodies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL